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Abstract. In liquid diffusion experiments, the diffusion path can be partially obstructed by
bubbles/voids, or oxide layers between the segments of a diffusion couple. In addition, there
have been claims of macroscopic manifestations of ‘wall effects’, i.e. a perceived dependence
of the diffusivity D on distance from the container wall over macroscopic dimensions. We
have numerically simulated the evolution of the concentration field in a 2D diffusion sample
in response to such deviations from 1D transport. We found that, owing to the smoothing
of the concentration distribution by radial diffusion, significant deviations from the ideal 1D
concentration field occur only in the axial direction. On evaluation of the concentration field for
an apparent diffusivityDa , either by the semi-infinite capillary methodology or by the method
of Codastefanoet al (1977 Rev. Sci. Instrum.48 1650), we found that local obstructions
of the transport path have to be in excess of half the transport path’s cross-section to result
in Da 6 0.95D. Furthermore, we conclude that the radial concentration gradients found in
solidified diffusion samples are no evidence for a ‘wall effect’ but are likely to indicate convective
transport contamination.

1. Introduction

Bubbles or voids in liquid diffusion samples [1, 2] can potentially result in erroneous
diffusivity determinations. It may also be difficult to prevent the formation of oxide layers,
which represent a barrier in the diffusion path, between the segments of a metallic diffusion
couple. Other perturbing phenomena observed in diffusion measurements have been
generically assigned to ‘wall effects’ [3–5]. By analogy with surface and grain boundary
diffusion, it is speculated that the diffusivityD varies over macroscopic dimensions from
the container wall. However, as pointed out by Nachtrieb [5], irrespective of the possible
underlying mechanism, ‘It is, of course, not credible that a true wall effect could extend much
further than a few atomic diameters from the capillary wall, and a reasonable explanation
in terms of an experimental artifact must be sought.’

In the following we will examine to what extent such deviations from 1D transport,
whether real or conceived, influence the evolution of the concentration distribution in a
diffusion sample. In addition we will evaluate the resulting non-ideal distributions in terms
of apparent diffusivitiesDa utilizing both the semi-infinite sample methodology [6] and the
method of Codastefanoet al [7].

In the semi-infinite technique [6], the diffusion sample is assumed to be infinite in one
direction, i.e. with a diffusion path of lengthL, the initial thicknessh of the diffusant source
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(with uniform concentrationC0) must fulfil the conditionh� L. This condition results in
the concentration profile at timet

C(x, t) = C0√
πDt

exp

(−x2

4Dt

)
. (1)

Thus, a plot of lnC againstx2 produces a straight line with the slope given by−1/(4Dt).
In the Codastefano technique [7], one monitors the solute concentrations against time at

the positionsx = L/6 and 5L/6. The resulting time tracesC1(t) andC2(t), respectively,
are related to the diffusivity through a straight line fit in the form

ln[C1(t)− C2(t)] = constant−
(
π2D

L2

)
t. (2)

Figure 1. Geometry and modifications of simulation model. Diffusion capillary with (a) voids
in liquid, (b) barrier at the source–solvent interface, and (c)y-dependentDs. Shaded areas
indicate regions of initial diffusant concentrationC0.

2. Simulation model

The basic geometry of the 2D simulation model and the various modifications used in the
simulations are depicted in figure 1. In accordance with our experimental approach [8], we
chose a total sample lengthL = 30, sample widthw = 3 mm, and initial diffusant layer
thicknessh = 1 mm. Three different sets of conditions resulting in deviations from 1D
diffusive transport were assumed. (a) A 1 mm square barrier on one wall, to simulate a
void, was centred atx = 3 or x = 7 mm. Note that these particular positions straddle the
Codastefano measurement coordinateL/6 at x = 5 mm (figure 1(a)). (b) A planar barrier
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Figure 2. Normalized concentration profiles at three diffusion times. Full curves, with void at
x = 3 mm; broken curves, unobstructed diffusion.

in the source–solvent interface was extended from one wall to eithery = 0.5 or 0.75w
(figure 1(b)). (c) Ay-dependent diffusivity was assumed, with eitherD = 0.5 of the input
diffusivity D0 at the wall and then a linear rise toD0 at y = 100µm, orD = 10−1D0 at the
wall rising toD0 at either 100 or 300µm; see the schematicD-profiles 1–3 in figure 1(c).
The value of 100µm represents the range at which a change attributed to the ‘wall effect’
was determined in [6]. The distancey = 300 µm corresponds to the sample depth from
which 24 keV photons are received in our self-diffusivity measurements with indium [8].

Since isothermal self-diffusion was assumed, the fluid density is uniform throughout the
diffusion process. Hence, solutions of the 2D diffusion equation

∂C

∂t
= ∂

∂xi

(
D
∂C

∂xi

)
(3)

whereC is the solute mass concentration andi = 1, 2, fully describe transport in this case.
We usedD0 = 10.22× 10−5 cm2 s−1 in all our numerical simulations, which corresponds
to the self-diffusivity of indium at 900◦C [9].

The numerical simulations were performed with Adaptive Research’s CFD 2000 finite
volume code, version 3.03. In the void and barrier cases a non-uniform grid of 62× 30
and 61× 40, respectively, was used. For the wall investigations only half the cell
(0 6 y 6 1.5 mm) was modelled, utilizing a 100× 61 grid. Doubling of the grid number
in the x- andy-direction in both they = 3 mm void and 75% barrier cases (the cases with
largest concentration gradients) resulted in insignificant changes in the concentration field.
All cases were run for 10 000 s to obtain sufficient diffusant concentrations at the 5L/6
position. For comparison with pure 1D diffusion an unobstructed, uniform-diffusivity run
was performed with each grid.

Diffusivities are typically deduced from the total amount of diffusant contained in cross-
sectional slices of the sample. Correspondingly, we base our evaluations of the apparent
diffusivity Da in the various cases on axial profiles of the concentration summed acrossy,
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i.e. on

C(x, t) =
w∑
y=0

C(x, y, t). (4)

Evaluations using the semi-infinite sample methodology were based on theC(x, t)-profile
obtained att = 2000 s, at which time the solute barely reachesL. The Codastefanoet al
methodology was applied to theC(L/6, t) andC(5L/6, t) traces obtained, depending on
the case, between 3000–5000 and 10 000 s with samples taken every 10 s.

3. Results and discussion

Figure 2 showsC(x)-profiles obtained in the case with a void atx = 3 mm at three
diffusion times. For comparison, we have also plotted the profiles resulting at these times
in the 1D diffusion (void-free) case. Both sets of profiles were normalized with respect to
C0. We see that the presence of the void, which blocks one third of the sample cross-section,
significantly retards the diffusive spreading of the solute. This is further illustrated by the
isoconcentration lines in the upper end of the sample displayed fort = 1000 s in figure 3.
Note that, as a result of radial diffusion the isoconcentration lines become essentially straight
and normal to thex-axis within a short distance downstream from the transport-obstructing
void.

Table 1. Apparent diffusivities (10−5 cm2 s−1) obtained in void configurations.

1D transport Void @ 3 mm Void @ 7 mm

Semi-infinite method 10.44± 0.174 10.18± 0.72 10.17± 0.80
Codastefano method 10.2000± 0.0001 10.240± 0.001 9.9800± 0.0005

Table 1 displays theDa-values obtained for the two void cases and the 1D results,
together with respective standard deviations associated with the fits. Interestingly, the
1D transport run, evaluated with the semi-infinite approach, yielded a slightly elevated
diffusivity compared with the inputD0 = 10.22× 10−5 cm2 s−1. This is not surprizing
since the initial source thickness,h = 1 mm, only poorly fulfills the requiredh � L

condition. Note that all void cases result inDa-values that are within a few per cent of
D0. Hence, errors introduced by the presence of these voids remain below the experimental
resolution, which is of order 5% [8, 10, 11].

Furthermore, table 1 shows that the location of the void has different effects on the
apparent diffusivities calculated from the two methods. The semi-infinite sample technique
is affected equally regardless of void location while the Codastefano method shows an
increase/decrease inDa with the void upstream/downstream of theL/6 measurement
location. This, plus the drastically lower standard deviation of the second methodology
indicated in tables 1–3, results from the different nature of the input data. The first fitting
procedure utilized theC(x)-profile that (a) is locally strongly deformed by the void, and
(b) is based on a finite resolution grid with 62 points. The Codastefano method, on the other
hand, benefits from (a) the smooth variation ofC(x) at the two sampling locations (L/6
and 5L/6, i.e.x = 5 and 25 in figure 2), and (b) the of O(500) data points used in the fit.

Figure 4 shows the axial profilesC(x)/C0 obtained with the 75% barrier (figure 1(b))
at three diffusion times together with the corresponding profiles resulting on the same grid
from the unobstructed 1D diffusion case. One sees that this barrier causes a pronounced
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Figure 3. Normalized isoconcentration linesC(x, y)/C0 in the upper part of the capillary at
t = 1000 s with void atx = 3 mm.

Table 2. Apparent diffusivities (10−5 cm2 s−1) obtained in barrier configurations.

1D transport 50% barrier 75% barrier

Semi-infinite method 10.45± 0.19 10.05± 0.42 9.59± 0.90
Codastefano method 10.2000± 0.0002 10.1600± 0.0004 10.050± 0.002

Table 3. Apparent diffusivities (10−5 cm2 s−1) obtained with ‘wall effects’.

1D transport D(y) case 1 D(y) case 2 D(y) case 3

Semi-infinite method 10.46± 0.19 10.29± 0.19 10.15± 0.19 9.55± 0.20
Codastefano method 10.1900± 0.0002 10.0400± 0.0002 9.9000± 0.0002 9.3000± 0.0003

retention of the solute in the region of initial diffusant location. However, table 2 reveals
that even in this drastic case, the error in the deduced diffusivities is barely larger than the
above typical experimental uncertainties. Here again the semi-infinite method is somewhat
more sensitive than the Codastefano method.

The results of the various assumed ‘wall effects’ are summarized in table 3. Even with
the particularly unphysical assumption of case 3,Da-values are obtained that lie within the
uncertainty of many measurements.
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Figure 4. Normalized concentration profiles at three diffusion times. Full curves, with 75%
barrier atx = 1 mm; broken curves, unobstructed diffusion.

Table 4. Maximum normalized radial concentration variation atx = L/6.

Case Radial1C/C (%) Time of occurrence (s)

D(y) case 1 0.014 250
D(y) case 2 0.028 230
D(y) case 3 0.082 230

The insensitivity of the concentration distribution to postulated ‘wall effects’ is further
illustrated in figure 5, in which we have plotted the concentration difference (normalized
to the samples maximumC) between case 3 and the 1D transport result at 300 s. It is
evident that solute redistribution by radial diffusion prevents the formation of significant
concentration gradients across the width of the sample. This is also supported by the low
values of the maximum radial concentration variation at positionx = L/6 listed in table 4.

Note that these maxima occur early in the diffusion runs. Thus they are unlikely to be
detectable in diffusivity measurements. As a consequence, experimental findings of radial
concentration gradients in cylindrical diffusion samples indicate convective contamination
(for detailed examples see [12]) rather than inferred dependences of diffusivity on the
distance from the container wall.

4. Conclusions

The above 2D simulations show that the influence of the model voids, barriers and ‘wall
effects’ on concentration distributions in diffusion samples and the subsequently deduced
diffusivities is rather marginal. Note that in real, 3D systems, owing to the lower cross-
sectional fraction taken on by such obstacles of the same radial dimensions, the deviations
from unobstructed diffusive transport will be even less significant. Hence, we conclude that
the contamination of diffusivity measurements owing to such geometrical parameters will in



On the insensitivity of liquid diffusivity measurements 7119

Figure 5. Difference in concentration between the ‘wall effect’ case 3 and uniform diffusion,
1C(x, y), normalized to the maximum concentration, obtained in the top part of the sample at
t = 300 s. Numbers in 10−2%.

most cases be negligible compared with the convective contamination arising from sample
non-isothermality [12].
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